Numerical Investigations of Fluid Structure Coupling: Oscillating Hydrofoil
نویسنده
چکیده
This paper presents an investigation of the hydro elastic behavior of vibrating blades in hydraulic machines, which is of strong interest for turbo machinery applications. As a representative case study for vibrating blade in hydraulic machines, a NACA 0009 oscillating hydrofoil is considered. The aim is to model the hydrodynamic moment acting on the oscillating hydrofoil. Two types of oscillation are investigated: forced and free motions. The fluid torque acting on the hydrofoil is modeled introducing an added moment of inertia, a fluid damping and a fluid stiffness coefficient. The model coefficients are identified through an investigation in the frequency domain of the forced motion. The influence of the frequency and the upstream velocity are investigated. The model is then validated in case of the free motion: numerical simulation and model prediction show good agreements in terms of frequency and dimensionless damping.
منابع مشابه
Numerical optimization of hydrofoil geometry for a Darrieus hydraulic turbine using dynamic mesh and central composite design
In this study, a Darrieus hydraulic turbine for power generation applications is chosen and the response surface methodology (RSM) based on central composite design (CCD) is applied to obtain the optimized design for its hydrofoil geometry to increase the torque coefficient. For this aim, all turbine performance factors, except hydrofoil geometry, were considered to be constant and the turbine ...
متن کاملModelling and Experimental Investigation of Carangiform Locomotion for Control
We propose a model for planar carangiform swimming based on conservative equations for the interaction of a rigid body and an incompressible fluid. We account for the generation of thrust due to vortex shedding through controlled coupling terms. We investigate the correct form of this coupling experimentally with a robotic propulsor, comparing its observed behavior to that predicted by unsteady...
متن کاملNumerical Analysis of Hydrodynamics for Bionic Oscillating Hydrofoil Based on Panel Method
The kinematics model based on the Slender-Body theory is proposed from the bionic movement of real fish. The Panel method is applied to the hydrodynamic performance analysis innovatively, with the Gauss-Seidel method to solve the Navier-Stokes equations additionally, to evaluate the flexible deformation of fish in swimming accurately when satisfying the boundary conditions. A physical prototype...
متن کاملNumerical and experimental study of a nearby solid boundary and partial submergence effects on hydrofoil added mass
The influence of the boundary conditions on the added mass of a NACA0009 cantilever hydrofoil has been numerically and experimentally investigated. The study has been focused on the effects of a lateral solid wall close to the hydrofoil tip side and of a partially wetted vertical hydrofoil at different levels with the free surface parallel to the span. A detailed fluid–structure model has been ...
متن کاملThe usability of the Selig S1223 profile airfoil as a high lift hydrofoil for hydrokinetic application
This work presents a numerical analysis of the ability of the high lift airfoil profile Selig S1223 for working as hydrofoil under water conditions. The geometry of the hydrofoil blade is designed through a suitable airfoil profile and then studied carefully by means of Computational Fluid Dynamics (CFD) in order to check its hydrodynamic behavior, i.e., including lift and drag analysis, and de...
متن کامل